Fenestelloid clades of the Cucurbitariaceae

Publication Type:Journal Article
Year of Publication:2019
Authors:W. M. Jaklitsch, Voglmayr H.

Fresh collections and their ascospore and conidial isolates backed up by type studies and molecular phylogenetic analyses of a multigene matrix of partial nuSSU-, complete ITS, partial LSU rDNA, rpb2, tef1 and tub2 sequences were used to evaluate the boundaries and species composition of Fenestella and related genera of the Cucurbitariaceae. Eight species, of which five are new, are recognised in Fenestella s.str., 13 in Parafenestella with eight new species and two in the new genus Synfenestella with one new species. Cucurbitaria crataegi is combined in Fenestella, C. sorbi in Synfenestella, Fenestella faberi and Thyridium salicis in Parafenestella. Cucurbitaria subcaespitosa is distinct from C. sorbi and combined in Neocucurbitaria. Fenestella minor is a synonym of Valsa tetratrupha, which is combined in Parafenestella. Cucurbitaria marchica is synonymous with Parafenestella salicis, Fenestella bavarica with S. sorbi, F. macrospora with F. media, and P. mackenziei is synonymous with P. faberi, and the latter is lectotypified. Cucurbitaria sorbi, C. subcaespitosa and Fenestella macrospora are lecto- and epitypified, Cucurbitaria crataegi, Fenestella media, F. minor and Valsa tetratrupha are epitypified in order to stabilise the names in their phylogenetic positions. A neotype is proposed for Thyridium salicis. A determinative key to species is given. Asexual morphs of fenestelloid fungi are phoma-like and do not differ from those of other representatives of the Cucurbitariaceae. The phylogenetic structure of the fenestelloid clades is complex and can only be resolved at the species level by protein-coding genes, such as rpb2, tef1 and tub2. All fungal species studied here occur, as far as has been possible to determine, on members of Diaporthales, most frequently on asexual and sexual morphs of Cytospora.

Citation Key:5591
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith